

Communiqué de presse 28 mai 2025

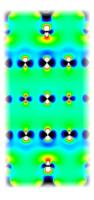
Un pas vers la prédiction de la supraconductivité à haute température

Des physiciens de l'Institut de physique et chimie des matériaux de Strasbourg (IPCMS, Unistra/CNRS), en collaboration avec l'Institut Quantique (Université de Sherbrooke, Canada) et l'Université Rutgers (États-Unis) ont franchi une étape décisive : ils ont mis au point une méthode théorique qui permettrait à terme de prédire les propriétés supraconductrices à haute température de matériaux à partir de leur seule composition chimique. Une avancée qui ouvre la voie à la conception de nouveaux matériaux supraconducteurs plus performants.

Lien vers la publication scientifique :

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.15.021071

La supraconductivité est un état quantique de la matière dans lequel les électrons s'organisent en paires, permettant un transport de courant sans perte d'énergie. Si ce phénomène est bien compris dans certains métaux à très basse température, comme l'aluminium ou le niobium, il restait jusqu'ici difficile à expliquer dans les matériaux à supraconductivité dite "à haute température", comme les dérivés d'oxyde de cuivre appelés cuprates.


Les chercheurs ont développé un nouveau cadre théorique capable de relier les propriétés supraconductrices à la structure atomique des matériaux. Leur méthode a été testée avec succès sur deux familles complexes de cuprates multicouches : $HgBa_2Ca_{n-1}Cu_nO_{2n+2}$ et $Ca_{1+n}Cu_nO_{2n}Cl_2$ (n=1,...,5).

Résultat : à partir de la structure cristalline et d'un seul paramètre fixe, ils ont pu reproduire des observations expérimentales majeures notamment la suprématie des composés tricouches (n=3) en matière de supraconductivité. Ce comportement s'explique par deux effets concurrents : la présence bénéfique de couches internes de CuO₂ et une répartition inégale des électrons qui tend à défavoriser ces mêmes couches.

En apportant une compréhension fine et prédictive de ces phénomènes, cette approche permet de dépasser les modèles antérieurs, souvent limités à une description qualitative.

Avec l'objectif à long terme d'atteindre une supraconductivité à température ambiante, cette nouvelle méthode constitue un premier pas vers une meilleure compréhension des

mécanismes quantiques à l'œuvre dans les matériaux complexes et ouvre de nouvelles perspectives pour la conception de matériaux supraconducteurs de nouvelle génération.

Crédits : Benjamin Bacq-Labreuil

Légende : illustration de la répartition inhomogène des électrons dans le composé tri-couche

(n=3)

Contact scientifique:
Benjamin Bacq-Labreuil
benjamin.bacq-labreuil@ipcms.unistra.fr

Contact presse :

Université de Strasbourg : Mathilde Hubert | mathilde.hubert@unistra.fr